Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Wei Sheng Yan Jiu ; 53(1): 88-101, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38443178

ABSTRACT

OBJECTIVE: To observe the effects of exposure to fine particulate matter(PM_(2.5)) on bone mass, microstructure, biomechanical properties, and osteogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs) in mice. METHODS: A total of 16 C57BL/6J mice aged 8 weeks were randomly divided into control group(NS group) and PM_(2.5) exposure group(PM group). NS group was given normal saline, PM group was given 14 mg/kg PM_(2.5) suspension, 50 µL, poisoning every 3 day. After 10 weeks, the lungs of mice were taken for HE staining, and the left tibia was taken for Micro CT detection to analyze parameters related to cancellous and cortical bone. The right tibia was taken for HE staining to observe changes in bone trabeculae. Immunohistochemical staining was used to detect type I collagen(Col I), osteoprotegerin(OPG), and nuclear factor-κB receptor activating factor ligand(RANKL) protein expression, tartrate resistant acid phosphatase(TRAP) staining for detection of osteoclasts. Extract primary BMSCs from bilateral femurs, induce osteogenesis, and then perform alkaline phosphatase(ALP) staining to detect ALP activity, alizarin red staining to detect bone mineralization ability, real-time PCR to detect osteocalcin(OCN), ALP, OPG, and RANKL mRNA expression, and biomechanical testing to test the mechanical properties of the femur. RESULTS: Compared with the NS group, the pulmonary alveolar structure of the PM group mice was disrupted and a large number of inflammatory cells gathered. Prompt for successful PM_(2.5) poisoning operation. Micro CT result showed that the bone mineral density(BMD) and bone volume fraction(BV/TV) of the PM group mice were 276.959±15.152 mg/cm~3 and 0.208%±0.009%, respectively. The NS group had 316.709±28.205 mg/cm~3 and 0.236%±0.019%, respectively. The PM group was lower than the NS group(P<0.05), but the trabecular number(Tb. N) There was no statistically significant difference in parameters such as trabecular thickness(Tb. Th) and trabecular separation(Tb. SP)(P>0.05). The HE staining result of the tibia showed that the trabeculae in the NS group were thick, dense, and uniform. The bone trabeculae in the PM group were slender, with a decrease in number, widened spacing, and sparse arrangement. The expression of Col I(0.023±0.009) and OPG(0.036±0.010) in the PM group increased compared to the NS group(0.079±0.007, 0.059±0.012), while the expression of RANKL(0.036±0.006) decreased compared to the NS group(0.022±0.002)(P<0.05); The number of TRAP positive particles increased in the PM group. The experimental result after osteoinduction of BMSCs in mice showed that compared with the NS group, the PM group had a decrease in the number of ALP positive cells and a decrease in the number of calcium nodules. The relative expression of ALP, OCN, and OPG mRNA in the PM group(0.375±0.021, 0.585±0.088, 0.768±0.112) was significantly reduced compared to the NS group(1.001±0.043, 1.006±0.132, 1.002±0.086), while the relative expression of RANKL mRNA(1.278±0.118) was increased compared to the NS group(1.001±0.057)(P<0.05). The biomechanical experimental result showed that the maximum deflection of the NS group was 0.337±0.031 mm, while the maximum deflection of the PM group was 0.258±0.041 mm. Compared with the NS group, the maximum deflection of the PM group decreased significantly(P<0.05), and the maximum stress and maximum load showed a decreasing trend, but the difference was not statistically significant(P>0.05). CONCLUSION: After 10 weeks of exposure to PM_(2.5), it can affect the bone health of mice, and its mechanism may be related to increased osteoclast activity and inhibition of the osteogenic differentiation ability of BMSCs.


Subject(s)
Bone Density , Mesenchymal Stem Cells , Animals , Mice , Mice, Inbred C57BL , Osteogenesis , RNA, Messenger
2.
Bone Rep ; 20: 101744, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38404727

ABSTRACT

Objectives: Adjacent segment disc degeneration (ASDD) is one of the long-term sequelae of spinal fusion, which is more susceptible with osteoporosis. As an anti-osteoporosis drug, strontium ranelate (SR) has been reported to not only regulate bone metabolism but also cartilage matrix formation. However, it is not yet clear whether SR has a reversal or delaying effect on fusion-induced ASDD in a model of osteoporosis. Materials and methods: Fifth three-month-old female Sprague-Dawley rats that underwent L4-L5 posterolateral lumbar fusion (PLF) with spinous-process wire fixation 4 weeks after bilateral ovariectomy (OVX) surgery. Animals were administered vehicle (V) or SR (900 mg/kg/d) orally for 12 weeks post-PLF as follows: Sham+V, OVX + V, PLF + V, OVX + PLF + V, and OVX + PLF + SR. Manual palpation and X-ray were used to evaluate the state of lumbar fusion. Adjacent-segment disc was assessed by histological (VG staining and Scoring), histomorphometry (Disc Height, MVD, Calcification rate and Vascular Bud rate), immunohistochemical (Col-II, Aggrecan, MMP-13, ADAMTS-4 and Caspase-3), and mRNA analysis (Col-I, Col-II, Aggrecan, MMP-13 and ADAMTS-4). Adjacent L6 vertebrae microstructures were evaluated by microcomputed tomography. Results: Manual palpation and radiographs showed clear evidence of the fused segment's immobility. After 12 weeks of PLF surgery, a fusion-induced ASDD model was established. Low bone mass caused by ovariectomy can significantly exacerbate ASDD progression. SR exerted a protective effect on adjacent segment intervertebral disc with the underlying mechanism possibly being associated with preserving bone mass to prevent spinal instability, maintaining the functional integrity of endplate vascular microstructure, and regulating matrix metabolism in the nucleus pulposus and annulus fibrosus. Discussion: Anti-osteoporosis medication SR treatments not only maintain bone mass and prevent fractures, but early intervention could also potentially delay degenerative conditions linked to osteoporosis. Taken together, our results suggested that SR might be a promising approach for the intervention of fusion-induced ASDD with osteoporosis.

3.
BMC Musculoskelet Disord ; 24(1): 803, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817119

ABSTRACT

BACKGROUND: Treatment of distal tibial fractures is a challenge due to their specific anatomical location. However, there is no appropriate mouse model to simulate a clinical distal tibial fracture for basic research. The aim of this investigation was to evaluate the feasibility of simulating a clinical fracture of the distal tibia of mice and to investigate the effect of ovariectomy (OVX)-induced osteoporosis on fracture healing in this model. METHODS: Sixty female 8-week-old C57BL/6 mice were randomly divided into two groups, either sham or OVX. A semi-fixation distal tibia fracture was established in the right tibia after 8 weeks of OVX. The right tibias were collected at 7, 14, 21, and 28 days post fracture. RESULTS: In the semi-fixation distal tibia fracture model, the posterior callus in the sham group showed excessive bone resorption and lower bone mass phenotype compared with the anterior site; a similar trend was not found in the OVX group. At 28 days post fracture, the posterior callus was more mineralized than the anterior callus in the OVX group. Although the fracture healing of the sham group showed a special phenotype in this mode, the progress and quality of fracture healing were still better than those of the OVX group. CONCLUSION: A semi-fixed distal tibial closed fracture mouse model was successfully established. In this model, excess bone resorption of the posterior callus impaired normal fracture healing, but not in OVX-induced osteoporotic bone. Although the stress shielding effect was not observed in the OVX group, impaired bone healing caused by OVX was still present. Our results suggest that this fracture model may have potential for studies on distal tibial fractures and stress shielding.


Subject(s)
Bone Resorption , Tibial Fractures , Rats , Animals , Mice , Female , Humans , Fracture Healing , Rats, Sprague-Dawley , Mice, Inbred C57BL , Bony Callus/diagnostic imaging , Tibial Fractures/drug therapy , Disease Models, Animal , Estrogens , Ovariectomy/adverse effects
4.
Exp Gerontol ; 164: 111794, 2022 07.
Article in English | MEDLINE | ID: mdl-35421557

ABSTRACT

BACKGROUND: To evaluate and compare the effects of the combined intervention of simvastatin and exercise on the bone degeneration in a mice model of osteoporosis (OP) induced by obesity and estrogen deficiency. METHODS: 56 female 3-month-old C57BL/6 mice were given a standard diet or a high-fat diet after ovariectomy (OVX) or sham surgery. Drug administration and exercise training were initiated 72 h after surgical operation, which were treated with simvastatin (10 mg/kg/day) or exercise (15 m/min for 30 min/day) or combined with simvastatin and exercise at 72 h for 8 weeks. The pathology of OP was assessed by histomorphology analyses, immunohistochemistry (IHC), micro-computed tomography (Micro-CT), enzyme-linked immunosorbent assay (ELISA) and cell culture. RESULTS: The coexistence of obesity and estrogen deficiency significantly further exacerbated OP pathology, and combined intervention showed a better significant anti-osteoporosis effect than monotherapy. In details, simvastatin combined with exercise ameliorated the abnormal bone mass, microstructure and bone marrow adipocyte differentiation, significantly increased osteoprotegerin (OPG), type 1 collagen (Col-I), RUNX2 and osteocalcin (OCN) expression, decreased the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and peroxisome proliferator-activated receptor γ (PPARγ). Furthermore, combined intervention markedly improved abnormal metabolic status, reduced the levels of serum glucose, insulin, triglycerides (TG), low-density lipoprotein (LDL), leptin, CTX-1 and IL-1ß, and increased the level of OCN. CONCLUSIONS: The coexistence of obesity and estrogen deficiency further aggravates bone tissue degeneration and abnormal metabolic pathology, which could be better inhibited by the combination with simvastatin and exercise instead of single intervention, suggesting that combined intervention may be a potential candidate for amelioration of the progression of OP.


Subject(s)
Diet, High-Fat , Osteoporosis , Animals , Diet, High-Fat/adverse effects , Estrogens , Female , Humans , Mice , Mice, Inbred C57BL , Obesity , Osteoporosis/etiology , Osteoporosis/metabolism , Ovariectomy , Simvastatin/pharmacology , Simvastatin/therapeutic use , X-Ray Microtomography
5.
Calcif Tissue Int ; 111(1): 87-95, 2022 07.
Article in English | MEDLINE | ID: mdl-35179619

ABSTRACT

Several studies have revealed that PTH1-34 may possess the potential for treating osteoarthritis (OA) and osteoporosis. However, no study has yet determined whether PTH1-34 can be used for the treatment of patella baja-induced patellofemoral joint OA (PFJOA). Thus, this study sought to assess the efficacy of PTH1-34 for the treatment of PFJOA in a rat model. Patella baja was induced in 3-month-old female Sprague-Dawley (SD) rats by patellar ligament shortening (PLS), after which the rats were randomly divided into three groups (n = 12): Sham, PLS, and PTH group (PTH + PLS, PTH1-34, 30 µg/kg/d, 5 days per week for 10 weeks). Thereafter, radiographic imaging, macroscopic and microscopic analyses, immunohistochemistry, and microcomputed tomography (CT) analysis were performed. The appearance of PLS-induced PFJOA promoted obvious changes in the patellar position and structure in the PLS group, which were characterized by cartilage degeneration, subchondral bone microstructure deterioration, patella baja, and increasing patella length. However, these negative characteristics were markedly ameliorated by PTH1-34, which not only inhibited cartilage catabolism by decreasing MMP-13 and ADAMTS-4 but also enhanced anabolism by increasing Col-II and Aggrecan. Furthermore, the micro-CT results showed a marked improvement in subchondral bone microarchitecture. The findings presented herein demonstrated that early treatment with PTH1-34 could improve cartilage metabolism and subchondral bone health in this PFJOA model.


Subject(s)
Bone Diseases , Cartilage, Articular , Osteoarthritis, Knee , Patellofemoral Joint , Animals , Cartilage , Cartilage, Articular/metabolism , Disease Models, Animal , Female , Osteoarthritis, Knee/drug therapy , Parathyroid Hormone/pharmacology , Parathyroid Hormone/therapeutic use , Patella , Patellofemoral Joint/metabolism , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
6.
Bone ; 157: 116323, 2022 04.
Article in English | MEDLINE | ID: mdl-34990878

ABSTRACT

OBJECTIVE: To evaluate and compare the effects of the combined intervention of metformin and exercise on the degeneration of cartilage and subchondral bone in a mouse model of osteoarthritis (OA) induced by estrogen deficiency and obesity. METHODS: 56 female 3-month-old C57BL/6 mice underwent ovariectomy (OVX) (n = 40) or a sham operation (n = 16) and were randomized into seven groups (n = 8/group): 1) sham-operated mice with a normal diet (Sham), 2) OVX mice with a normal diet (OVX), 3) sham-operated mice with high-fat diet (HFD) (HSVX), 4) OVX mice with HFD (HOVX), 5) OVX mice with HFD + exercise (HOVE), 6) OVX mice with HFD + metformin (HOMX), and 7) OVX mice with HFD + metformin + exercise (HOME). Drug administration and exercise training were initiated 72 h after surgical operation. The pathology of OA was assessed by histomorphology analyses, immunohistochemistry (IHC), tartrate-resistant acid phosphatase (TRAP) staining, micro-computed tomography and enzyme-linked immunosorbent assay (ELISA). RESULTS: Histomorphological analysis revealed that OA was significantly exacerbated by the coexistence of estrogen deficiency and obesity and markedly alleviated by the combined intervention. In details, metformin plus exercise ameliorated the abnormal metabolic status and cartilage lesions, significantly increased aggrecan and collagen-II expression and decreased the expression of ADAMTS-4. Furthermore, combined intervention markedly improved bone degeneration, bone mass and microarchitecture of subchondral bone. And the intervention also increased the concentration of OCN and decreased the serum concentration of IL-1ß and CTX-1 and glucose. CONCLUSIONS: The coexistence of estrogen deficiency and obesity further aggravates abnormal metabolic pathology and articular degeneration, which could be prevented by the combination with metformin and exercise, suggesting that combined intervention may be a potential candidate for amelioration of the progression of OA.


Subject(s)
Metformin , Osteoarthritis , Animals , Diet, High-Fat , Estrogens , Female , Humans , Male , Metformin/pharmacology , Metformin/therapeutic use , Mice , Mice, Inbred C57BL , Obesity/complications , Osteoarthritis/complications , Ovariectomy , X-Ray Microtomography
8.
Orthop Surg ; 13(5): 1662-1672, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34105258

ABSTRACT

OBJECTIVE: To assess the effects of PTH (1-34) on bone and cartilage metabolism in a collagenase-induced mouse model of osteoarthritis (OA) and examine whether PTH (1-34) affects the expression of JAK2/STAT3 and WNT5A/ROR2 in this process. METHODS: Eighteen 12-week-old male C57Bl/6 mice were randomly assigned into three groups as follows: sham group (Group A), the collagenase + saline injection group (Group B), and the collagenase + PTH (1-34) treatment group (Group C). Collagenase was injected (intra-articular) into the knee joint of Group B and C. The PTH (1-34)-treatment was started at 6 weeks after the operation and lasted for 6 weeks. Cartilage pathology was evaluated by gross visual, histological, and immunohistochemical assessments. Subchondral bone was evaluated by microcomputed tomography (micro-CT) and immunohistochemical analyses. RESULTS: The OARSI macroscopic and microscopic scores of Group B were higher than those of Group A (P = 0.026; P = 0.002, respectively). Group C showed statistically significant differences in macroscopic and microscopic scores from Group B (P = 0.041; P = 0.008, respectively). The results showed that the Col-II and AGG expression levels in the cartilage tissue were significantly lower in Group B than Group A (P < 0.001; P = 0.008, respectively). The Col-II and AGG expression levels were significantly higher in Group C than Group B (P = 0.009; P = 0.014, respectively). MMP-13, ADAMTS-4, Caspase-3, P53, and Bax expression levels were significantly higher in Group B than the Group A (P < 0.001; P < 0.001; P = 0.04; P < 0.001; P = 0.005, respectively); however, the cartilage tissue in Group C showed significantly less ADAMTS-4, MMP-13, Caspase-3, P53, and Bax expression than Group B (P < 0.001, P < 0.001, P = 0.044; P = 0.002; P = 0.005, respectively). Over-expressed JAK2/STAT3 and WNT5A/ROR2 were observed in both cartilage and subchondral bone in this model; however, these changes were prevented by PTH (1-34) treatment. These parameters (bone mineral density, bone volume ratio, trabecular bone pattern factor, and structure model index) of micro-CT indicated subchondral bone loss and architecture changes in Group B, but improvements in these parameters in Group C. CONCLUSIONS: PTH (1-34) exhibits protective effects on both cartilage and subchondral bone in a collagenase-induced OA mouse model, and it may be involved in down-regulating the expression of JAK2/STAT3 and WNT5A/ROR2.


Subject(s)
Cartilage, Articular/drug effects , Janus Kinase 2/metabolism , Osteoarthritis, Knee/drug therapy , Parathyroid Hormone/pharmacology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , STAT3 Transcription Factor/metabolism , Wnt-5a Protein/metabolism , Animals , Collagenases , Disease Models, Animal , Down-Regulation , Male , Mice , Mice, Inbred C57BL
9.
Arthritis Res Ther ; 23(1): 152, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34049577

ABSTRACT

BACKGROUND: Although adjacent segmental intervertebral disc degeneration (ASDD) is one of the most common complications after lumbar fusion, its exact mechanism remains unclear. As an antibody to RANKL, denosumab (Dmab) effectively reduces bone resorption and stimulates bone formation, which can increase bone mineral density (BMD) and improve osteoporosis. However, it has not been confirmed whether Dmab has a reversing or retarding effect on ASDD. METHODS: Three-month-old female Sprague-Dawley rats that underwent L4-L5 posterolateral lumbar fusion (PLF) with spinous-process wire fixation 4 weeks after bilateral ovariectomy (OVX) surgery were given Dmab 4 weeks after PLF surgery (OVX+PLF+Dmab group). In addition, the following control groups were defined: Sham, OVX, PLF, and OVX+PLF (n=12 each). Next, manual palpation and X-ray were used to evaluate the state of lumbar fusion. The bone microstructure in the lumbar vertebra and endplate as well as the disc height index (DHI) of L5/6 was evaluated by microcomputed tomography (µCT). The characteristic alterations of ASDD were identified via Safranin-O green staining. Osteoclasts were detected using tartrate-resistant acid phosphatase (TRAP) staining, and the biomechanical properties of vertebrae were evaluated. Aggrecan (Agg), metalloproteinase-13 (MMP-13), and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) expression in the intervertebral disc were detected by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) analysis. In addition, the expression of CD24 and Sox-9 was assessed by immunohistochemistry. RESULTS: Manual palpation showed clear evidence of the fused segment's immobility. Compared to the OVX+PLF group, more new bone formation was observed by X-ray examination in the OVX+PLF+Dmab group. Dmab significantly alleviated ASDD by retaining disc height index (DHI), decreasing endplate porosity, and increasing vertebral biomechanical properties and BMD. TRAP staining results showed a significantly decreased number of active osteoclasts after Dmab treatment, especially in subchondral bone and cartilaginous endplates. Moreover, the protein and mRNA expression results in discs (IVDs) showed that Dmab not only inhibited matrix degradation by decreasing MMP-13 and ADAMTS-4 but also promoted matrix synthesis by increasing Agg. Dmab maintained the number of notochord cells by increasing CD24 but reducing Sox-9. CONCLUSIONS: These results suggest that Dmab may be a novel therapeutic target for ASDD treatment.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Osteoporosis , Animals , Denosumab , Female , Humans , Lumbar Vertebrae , Ovariectomy , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
10.
Bosn J Basic Med Sci ; 21(3): 284-293, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33259777

ABSTRACT

Overexpression of transforming growth factor-beta 1 (TGF-ß1) and subchondral bone remodelling play key roles in osteoarthritis (OA). Raloxifene (RAL) reduces the serum level of TGF-ß1 in postmenopausal women. However, the effect of RAL on TGF-ß1 expression in articular cartilage is still unclear. Therefore, we aimed to investigate the protective effect of RAL on osteoporotic osteoarthritis via affecting TGF-ß1 expression in cartilage and the metabolism of subchondral bone. Osteoporotic osteoarthritis was induced by a combination of anterior cruciate transection (ACLT) and ovariectomy (OVX). Rats were divided into five groups (n = 12): The sham group, the ACLT group, the OVX group, the ACLT + OVX group, and the RAL group (ACLT + OVX + RAL, 6.25 mg/kg/day for 12 weeks). Assessment was performed by histomorphology, microcomputed tomography (micro-CT) scan, immunohistochemistry, and tartrate-resistant acid phosphatase (TRAP) staining. We found that severe cartilage degeneration was shown in the ACLT + OVX group. The histomorphological scores, the levels of TGF-ß1, and its related catabolic enzymes and osteoclasts numbers in the ACLT + OVX group were higher than those in other groups (p < 0.05). Furthermore, structure model index (SMI) and trabecular spacing (Tb.Sp) were decreased (p < 0.05), while bone mineral density (BMD), bone volume fraction (BV/TV), and trabecular number (Tb.N) were increased by RAL compared with the ACLT + OVX group (p < 0.05). Our findings demonstrated that RAL in clinical doses retards the development of osteoporotic osteoarthritis by inhibiting the overexpression of TGF-ß1 in cartilage and regulating the metabolism of subchondral bone. These results provide support for RAL in the expansion of clinical indication for prevention and treatment in postmenopausal osteoarthritis.


Subject(s)
Bone Remodeling/drug effects , Cartilage, Articular/metabolism , Osteoarthritis/drug therapy , Raloxifene Hydrochloride/pharmacology , Transforming Growth Factor beta1/metabolism , Animals , Female , Osteoporosis , Ovariectomy , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
11.
Bone Joint Res ; 9(10): 675-688, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33101657

ABSTRACT

AIMS: Parathyroid hormone (PTH) (1-34) exhibits potential in preventing degeneration in both cartilage and subchondral bone in osteoarthritis (OA) development. We assessed the effects of PTH (1-34) at different concentrations on bone and cartilage metabolism in a collagenase-induced mouse model of OA and examined whether PTH (1-34) affects the JAK2/STAT3 signalling pathway in this process. METHODS: Collagenase-induced OA was established in C57Bl/6 mice. Therapy with PTH (1-34) (10 µg/kg/day or 40 µg/kg/day) was initiated immediately after surgery and continued for six weeks. Cartilage pathology was evaluated by gross visual, histology, and immunohistochemical assessments. Cell apoptosis was analyzed by TUNEL staining. Microcomputed tomography (micro-CT) was used to evaluate the bone mass and the microarchitecture in subchondral bone. RESULTS: Enhanced matrix catabolism, increased apoptosis of chondrocytes in cartilage, and overexpressed JAK2/STAT3 and p-JAK2/p-STAT3 were observed in cartilage in this model. All of these changes were prevented by PTH (1-34) treatment, with no significant difference between the low-dose and high-dose groups. Micro-CT analysis indicated that bone mineral density (BMD), bone volume/trabecular volume (BV/TV), and trabecular thickness (Tb.Th) levels were significantly lower in the OA group than those in the Sham, PTH 10 µg, and PTH 40 µg groups, but these parameters were significantly higher in the PTH 40 µg group than in the PTH 10 µg group. CONCLUSION: Intermittent administration of PTH (1-34) exhibits protective effects on both cartilage and subchondral bone in a dose-dependent manner on the latter in a collagenase-induced OA mouse model, which may be involved in regulating the JAK2/STAT3 signalling pathway.Cite this article: Bone Joint Res 2020;9(10):675-688.

12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(6): 797-803, 2020 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-32538575

ABSTRACT

OBJECTIVE: To summarize the active changes of Wnt signaling pathway in osteoarthritis (OA) as well as the influence and mechanism of dual-targeted regulation on cartilage and subchondral bone and the role of crosstalk between them on OA process. METHODS: The relevant literature concerning the articular cartilage, subchondral bone, and crosstalk between them in OA and non-OA states by Wnt signaling pathway in vivo and vitro experimental studies and clinical studies in recent years was reviewed, and the mechanism was analyzed and summarized. RESULTS: Wnt signaling can regulate the differentiation and function of chondrocytes and osteoblasts through the classic ß-catenin-dependent or non-classical ß-catenin-independent Wnt signaling pathway and its cross-linking with other signaling pathways, thereby affecting the cartilage and bone metabolism. Moreover, Wnt signaling pathway can activate the downstream protein Wnt1-inducible-signaling pathway protein 1 to regulate the progress of OA and it also can be established gap junctions between different cells in cartilage and subchondral bone to communicate molecules directly to regulate OA occurrence and development. Intra-articular injection of Wnt signaling inhibitor SM04690 can inhibit the progress of OA, and overexpression of Wnt signaling pathway inhibitor Dickkopf in osteoblasts can antagonize the role of vascular endothelial growth factor work on chondrocytes and inhibit the catabolism of its matrix. CONCLUSION: The regulation of metabolism and function of cartilage and subchondral bone and crosstalk between them is through interactions among Wnt signaling pathway and molecules of other signaling. Therefore, it plays an vital role in the occurrence and development of OA and is expected to become a new target of OA treatment through intervention and regulation of Wnt signaling pathway.


Subject(s)
Bone and Bones , Cartilage, Articular , Osteoarthritis , Wnt Signaling Pathway , Bone and Bones/physiology , Cartilage, Articular/physiology , Chondrocytes/metabolism , Humans , Osteoarthritis/physiopathology , Wnt Signaling Pathway/physiology
13.
J Cell Biochem ; 120(11): 18979-18994, 2019 11.
Article in English | MEDLINE | ID: mdl-31245876

ABSTRACT

Simvastatin has been shown to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Our study aimed to illuminate the underlying mechanism, with a specific focus on the role of Hedgehog signaling in this process. BMSCs cultured with or without 10-7 mol/L simvastatin were subjected to evaluation of osteogenic differentiation capacity. Osteogenic markers such as type 1 collagen (COL1) and osteocalcin (OCN), as well as key molecules of Hedgehog signaling molecules, were examined by Western blot and real-time polymerase chain reaction (PCR). Co-immunoprecipitation and mass spectrometry assays were applied to screen for Gli1-interacting proteins. Cyclopamine (Cpn) was used as a Hedgehog signaling inhibitor. Our results indicated that simvastatin increased alkaline phosphatase (ALP) activity; mineralization of extracellular matrix; mRNA expression of ALP, COL1, and OCN; and expression and nuclear translocation of Gli1. Contrasting effects were observed in Cpn-exposed groups, but were partially rescued by the simvastatin treatment. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that Gli1-interacting proteins were primarily associated with mitogen-activated protein kinase (MAPK) (P = 7.04E-04 ), hippo, insulin, and glucagon signaling. Further, hub genes identified by protein-protein interaction network analysis included Gli1-interacting proteins such as Ppp2r1a, Rac1, Etf1, and XPO1/CRM1. In summary, the current study showed that the mechanism by which simvastatin stimulates osteogenic differentiation of BMSCs involves activation of Hedgehog signaling, as indicated by interactions with Gli1 and, most notably, the MAPK signaling pathway.


Subject(s)
Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Simvastatin/pharmacology , Zinc Finger Protein GLI1/metabolism , Animals , Gene Expression Regulation/drug effects , MAP Kinase Signaling System/drug effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...